Unit D: Agricultural Equipment Systems

Lesson 3: Operating, Calibrating, and Maintaining Agricultural Planting Systems

Student Learning Objectives:
Instruction in this lesson should result in students achieving the following objectives:
1. Describe the operating principles of planting equipment.
2. Identify the types of planting equipment.
3. Identify the components of row-crop planting equipment.
4. Identify the components of solid planting equipment.
5. Explain the calibration of planting equipment.
6. Identify maintenance procedures for planting equipment.

Recommended Teaching Time: 2 hours

Recommended Resources: The following resources may be useful in teaching this lesson:

List of Equipment, Tools, Supplies, and Facilities:
- Writing surface
- PowerPoint Projector
- PowerPoint Slides
- Transparency Masters
- Copies of student worksheets
- Corn planter, grain drill or parts from them

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slide 2):
- Broadcasting
- Checkrow planting
- Field calibration
- Germination
- Hill drop planting
- Population
- Row-crop planting
- Solid planting
- Starter fertilizer
Interest Approach:
Show students a boll of cotton (a small, average, and large boll of cotton). Lead a discussion on where the cotton comes from. Ask students why the size of a boll of cotton is important?
Another approach would be to have parts from an older and a newer planter on hand. Ask the students to compare the technologies involved in each.

SUMMARY OF CONTENT AND TEACHING STRATEGIES

Objective 1: Describe the operating principles of planting equipment.
Anticipated Problem: What are the operating principles of planting equipment?

(PowerPoint Slide 3)
I. The purpose of most planters and grain drills, excluding broadcast planters, is to plant seeds evenly in rows or on beds. To do this in the manner desired, the planter must perform five basic functions:

(PowerPoint Slide 4)
A. Opening a furrow in the soil—The grain must be placed in moisture for the grain to germinate. Germination is the change from a dormant condition to one of activity and growth. The grain should be an equal depth, regardless of the soil conditions. The furrow opener on planters and drills allows for both of these conditions to be met.

B. Meter the seed to the soil—In order to obtain maximum yields, the seeds must be planted at specific rates. This is accomplished by use of metering devices on planters and drills, which regulate when seeds are put into the soil.

(PowerPoint Slide 5)
C. Placing the seed in the soil—Crop yields depend heavily upon depth and space between seeds. Yield is affected because placement has a bearing on emerged plant population. This function is accomplished by the two previous functions. The furrow opener provides a uniform depth for the seeds, while the metering device allows for equal spacing between plants.

D. Covering the seed in the soil—The seed must be covered for protection against such factors as temperature, moisture, and rodents. If the seeds were not covered, these factors and others would decrease the possibilities of the seeds germinating and thus decrease yields. This function is usually accomplished by the use of press wheels on planters, and by the chains or drags on drills.

E. Firming the seedbed—Provides for adequate seed to soil contact, which aids in faster germination, and reduces crust formation. The press wheels and drag chains accomplish this function.

Use TM: 3-1 to emphasize the functions of planters. Seeing a planter working will compliment this discussion.
Objective 2: Identify the types of planting equipment.

Anticipated Problem: What are the types of planting equipment?

(PowerPoint Slide 6)

II. Planting or seeding equipment is generally divided into four types.

(PowerPoint Slides 7, 8, 9, and 10)

A. Row-crop planting is generally used for crops such as sorghum and cotton, which require precise row spacing of the plants within the row. These crops are planted in rows to aid in weed control as well as harvesting. There are three general types of row-crop planters based on the method by which the seeds are planted in the rows.

1. The drill planting method is commonly used in planting sorghum and cotton. The seeds are dropped individually in the row at a given distance. Spacing depends on the desired population. Population is the number of seeds or plants per hectare.

2. The hill-drop planting method, where the seeds are located in hills of two to five seeds per hill, is less common for corn planting today than years ago. To hill drop, the seeds are accumulated within the planter and dropped as a group into the seedbed, or they may be accumulated beneath the seed plate and dropped or carried to the soil.

3. The third row-crop planting method is checkrow planting, where three to five seeds are dropped in each hill when using this method. The hills are generally separated within the row the same distance as the rows are wide and aligned perpendicular to the direction of travel. Checkrow planting of corn was once popular when there was a need for cross cultivation for weed control.

B. Grain drills and air seeders are used to sow or plant seeds such as wheat. These seeds are planted as high-population crops.

(PowerPoint Slides 11 and 12)

C. Broadcast seeders are used to broadcast small grains such as oats, barley, and grass or legume seed. Broadcast seeders are not used as a cash-crop planter due to inaccuracy of seeding. Broadcasting is where the seeds are scattered on a random, non-row basis on the top of the seedbed. Another field operation is then required to cover the seed.

D. Specialized planters are designed for special planting operations. They vary in row widths, metering methods, furrow openers, covering methods, and type of seed-placing mechanisms. Examples of specialized planters are the potato planter, vegetable planter, and transplanters.

Discuss the different planting equipment and processes. Viewing the different equipment in action will help achieve this objective.
Objective 3: Identify the components of row-crop planting equipment.

Anticipated Problem: What are the components of row-crop planting equipment?

(PowerPoint Slide 13)

III. If the crop is planted in rows far enough apart to permit the operation of machinery, such as cultivators and harvesters, this is called row-crop planting. Planters are designed to plant large numbers of different crops in many soil conditions.

(PowerPoint Slide 14)

A. Three categories of frames are used on planters.
 1. The drawn or trailing planter has its own carrying wheels which are in contact with the soil when the planter is in the raised (transport) or lowered (planting) positions. The planter units are mounted on a main frame which is attached to the tractor by the planter tongue. The planter is raised and lowered by remote hydraulic cylinders attached to the tractor hydraulic system.
 2. The integral planter frame may be attached to the three-point hitch of the tractor or to the frame of the tractor.
 3. The tool-bar planter has unit type planters each having its own frame and drive. The units may be attached to an implement tool bar and mounted on the three-point hitch of the tractor or on drawn or integral frames of other implements.

(PowerPoint Slide 15)

B. Planter drives must deliver the correct spacing of seeds in the row at varying travel speeds and under varying soil and topographic conditions. Planter drives are usually either ground or hydraulic driven.
 1. The three types of ground wheel drives commonly used to turn the seeding mechanism are carrying-wheel drives, gauge-wheel drives and press-wheel drives.

(PowerPoint Slide 16)

a. Carrying-wheel drives are used on most drawn or trailing type planters. Power to drive the seeding mechanism is transmitted from the transport wheels through a series of chains and sprockets, shafts and gears, or a gear box to a central drive for the metering mechanisms. Seeding population is adjusted by changing to different sizes of drive and driven sprockets.

b. Gauge-wheel drive is commonly used on tool-bar planters or integral-mounted planters. Power to drive the seeding mechanism is the same as the carrying-wheel drive. Seeding population is adjusted by changing to different sizes of drive and driven sprockets.

(PowerPoint Slide 17)

c. Press-wheel drive may be used when unit type planters are mounted on a tool bar. Power to turn the seeding metering mechanism is transmitted through a drive chain and sprockets. Slippage of the press-wheel drive may be greater because the press-wheel is running in soil loosened by the furrow opener and the weight or down pressure
on the wheel may not be enough to prevent slippage. Seeding population is adjusted by changing to different sizes of drive and driven sprockets.

(PowerPoint Slide 18)

2. Hydraulic driven planter drives are operated by the tractor’s hydraulic system.
 a. A hydraulic motor is mounted on the planter and drives the metering system through a chain and sprockets.
 b. Seeding population is controlled from the tractors operator’s compartment using variable rate technology (VRT).
 c. A radar gun or Global Positioning System (GPS) equipment is used to automatically adjust the population, depending on the ground speed.

(PowerPoint Slide 19)

C. The major function of the furrow opener is to open a well defined groove in the soil where the seed may be placed at the proper depth and in firm contact with the soil to provide for optimum germination and seedling emergence.

The major types of furrow openers used are the V-trench, disk, runner, combination runner and disk, and shovel openers.

(PowerPoint Slide 20)

1. The V-trench openers are effective in most soil conditions and can be used in both conventional and conservation tillage systems. Two sharply angled disks and close hugging gauge wheels are used to make a V-shaped planting trench. The wheels not only gauge the depth where the seed enters the ground, they also firm and mold the soil around the trench cut by the disks.

2. Disk openers are popular where minimum tillage systems are used and where there is a greater amount of trash left on the surface. Two sharply angled disks are used to make a V-shaped planting trench cut by the disks.

3. Runner openers are used when planting crops in ground that has been conventionally tilled. A runner opener widens from the front to rear. The seeds are dropped through an opening at the rear of the runner which has formed a furrow of the desired depth for seed placement.

(PowerPoint Slides 21 and 22)

4. The combination runner and double-disk opener has the advantages of both types of openers.

5. Shovel openers are used to prepare a seed slot or groove in sticky soil conditions.

(PowerPoint Slide 23)

D. The function of the seed metering system is to select the seeds from the hopper either individually or randomly and deliver it to the seed placing mechanism at a selected rate. Seed metering systems may be classified as seed plate, finger-pickup, air devices or volume devices.

(PowerPoint Slides 24 and 25)

1. The seed plate metering system has a seed plate with openings or cells that rotate at the bottom of a seed hopper.
a. As the seed plate turns, seeds fall into the openings or cells of the seed plate. If the cells of the seed plate are the proper size, only one kernel will fall into each cell. A spring loaded cutoff pawl keeps seeds other than the one in the seed plate cell from dropping from the hopper into the discharge tube. When a cell containing a seed passes over the discharge hole in the hopper bottom, a spring loaded knockout pawl ejects the seed through this opening to the seed placement device.

b. Individual seed plates are designed to select seeds of a specific size. Seed plates have to be changed every time seed size changes.

(PowerPoint Slides 26 and 27)

2. The finger-pickup metering system was developed to eliminate the changing of plates for various sizes of seeds.
 a. The finger-pickup will pickup individual kernels of various sizes and shapes with a high degree of accuracy.
 b. The finger-pickup assembly has twelve spring-loaded fingers that are opened and closed by a cam as they rotate. The corn is fed from a hopper into a reservoir by gravity. As the fingers move through the corn in the reservoir, they close and trap the kernel between the finger and the stationary plate. As the finger moves clockwise, additional kernels which may have been trapped beneath the finger fall away as they pass over two indented areas in the stationary plate. The one remaining kernel, held securely by spring tension, is then carried to the discharge hole where it is ejected into the seed placement mechanism.

(PowerPoint Slide 28)

3. The three types of air metering devices used on planters are the pressurized metering disk, and the vacuum metering disk.

(PowerPoint Slides 29, 30, and 31)

a. The pressurized metering drum planter uses a PTO or hydraulic motor driven fan to pressurize the centralized seed hopper and seed metering drum mounted on the outside of the seed hopper. The seed drum has a row of holes around its circumference for each row being planted. The pressure inside the seed metering drum is slightly higher than the atmospheric pressure outside the drum. Due to this difference in pressure, seeds are held in the holes of the seed drum. A seed cutoff brush removes excess seeds which may have been trapped in a hole. As the drum rotates near the discharge manifold, a release wheel diverts the seed by gravity into the seed discharge manifold where it is pushed by air through a seed delivery tube to the row planting unit.

(PowerPoint Slides 32 and 33)

b. The pressurized metering disk approach uses a vertical rotating disk, mounted in each row unit, to pickup seeds from a large reservoir from the seed hopper. Air pressure, provided by a centralized blower or electric-motor-driven blowers mounted on each row unit, holds the seed in pockets located around the circumference of the disk. A cutoff
device causes the kernel to drop from the revolving disk into a delivery tube and then into the soil.

(PowerPoint Slides 34 and 35)

c. The third air metering device is the vacuum system. In this system, the seeds are held in the openings by atmospheric air pressure. The pressure opposite the seed is reduced by the partial vacuum directed by the fan. A seed cutoff wiper is used with the vacuum system to eliminate extra seeds which may have been trapped in a hole in the seed metering wheel. Another vacuum metering system uses a hydraulic-driven vacuum pump to create a consistent vacuum to each metering unit.

(PowerPoint Slide 36)

4. A number of crops are metered volumetrically rather than individually.
 a. These crops are metered on the basis of an average spacing or an average weight or volume per hectare.
 b. Volume metering devices are used on row-crop planters, grain drills, and broadcast seeders.

(PowerPoint Slide 37)

c. The common types are feed cup (fluted type), picker wheel, adjustable hole, and adjustable cutoff plate.
 1. The internal feed cup has scallops on the inside of the feed cup. Seeds feed into the feed cup from the hopper. They are then carried upward to the discharge where they are dropped into a seed tube.
 2. The picker wheel metering device is used on gin run cotton seed. The wheel rotates vertically at the outside bottom edge of the cotton seed hopper. The top edge of the wheel revolves in the seed. The seeds are forced by an agitator into the picker wheel where they are moved downward into a seed tube.
 3. Using an agitator over an adjustable hole is another type of random-metering method. The agitator keeps the seeds distributed over a hole. As the seeds are moved over the hole, a random number fall into the seed delivery tube.
 4. The adjustable cutoff plate is very gentle and capable of handling fragile seeds. The seeds from the hopper flow through a stationary cutoff plate onto a rotating-dome-type seed plate. The rotation of the seed plate plus the sloping surface causes the seeds to be carried to the discharge point.

(PowerPoint Slide 38)

E. The function of the seed placement mechanism is to accept the seed from the metering device, drop it through the seed tube and deliver it to the furrow so that the seeds or hills are properly spaced.

(PowerPoint Slide 39)

1. The gravity drop seed placement device is the simplest and least expensive mechanism.
a. It has the disadvantages of not placing the seeds uniformly in the row, because a row-crop planter is moving, the seed is likely to come to rest 20 to 30 centimeters from where it first contacts the soil.
b. If a seed bounces around in the tube on its way to the furrow while another seed falls straight through, kernel spacing can be greatly affected.

2. To improve the accuracy of seed placement in the row, four power-drop systems have been developed.
 a. The seed conveyor belt is designed for use with the finger pickup metering assembly. The seeds are ejected into the seed wheel or belt and carried down the row-crop unit where they are delivered to the soil in a manner that reduces the effect of the forward travel of the planter, seed roll is nearly eliminated, and seed placement is extremely accurate.

(PowerPoint Slide 40)
 b. The rotary-valve seed drop mechanism is designed for use with the plate-type metering system. The valve holds and prevents the seed from falling by gravity to the bottom of the furrow. The valve holds the seed until the lobe ejects the seed rearward into the furrow.
 c. The chain drop or conveyor system picks up the seed at the bottom of the seed metering mechanism and carries it to a point just above the soil. The seed is then ejected rearward to reduce seed roll.
 d. The air seed drop system uses air velocity to transport the seed to the furrow.

(PowerPoint Slide 41)
F. The seeds must all be planted at nearly the same depth to get good germination and seedling emergence.
 1. Some type of gauging or depth control device is required since the seed bed is never perfectly flat and soils vary in their firmness.
 2. Gauge wheels can be found in several different locations on the planting unit. The best location of the gauge wheel is beside the furrow opener at the point where the seed is discharged into the furrow.
 3. Depth bands and gauge shoes control the depth of planting at the point of seed discharge into the soil. They should not be used in soils that tend to stick to them, since that would cause the depth of planting to be decreased.

G. To insure the seed is in contact with the soil and that it is not lying in a void or air space, seed covering devices are used. These devices could be a shovel, knife, disk, or chain.

(PowerPoint Slide 42)
1. The shovel cover is used in sticky soil conditions.
2. The knife cover works well in conventionally tilled soils but plugs in trashy conditions.
3. The disk cover will either cut through surface residue or ride over it.
4. The chain cover is attached to the rear of the furrow opener.
H. In most soils, it is desirable to firm the soil around the seed to obtain good seed-to-soil contact.
(PowerPoint Slides 43 and 44)
1. Seed-firming wheels serve a dual purpose in that they close the seed furrow and firm the seedbed. To prevent crusting and aid in seedling emergence, the surface of the soil directly over the seed is not packed.
2. Press wheels are used in soil conditions where obtaining good seed-to-soil contact is not a problem.

I. The seed hopper may be either the individual type or the centralized type. They can be made out of metal or fiberglass.
(PowerPoint Slide 45)
J. To achieve maximum yields, seed must be planted at the correct population rate with the proper spacing. Seed monitors are helpful in order to know what is being planted.
1. The function of the seed monitor is to alert the operator at the time the malfunction occurs. A plugged seed tube or other undiscovered malfunction in a planting unit can greatly reduce the yield at harvest time.
2. The monitoring process starts with the sensor mounted in the seed tube of each planting unit. The sensor, which is a photoelectric cell, senses the presence of each seed as it falls through the seed tube. The sensor then transmits this information to the monitor console using electrical signals. The monitor processes the information and displays it to the operator.

(PowerPoint Slide 46)
K. Attachments used on planters could include fertilizer, herbicide, insecticide, or tillage.
1. Fertilizer applied at planting time is considered starter fertilizer.
2. Fertilizers, herbicides, and insecticides may be applied either as a dry, granular material or as a liquid.
3. Tillage attachments used while planting enable the farmer to reduce the number of trips over the field.

Use TM: 3-2 to illustrate seed plate-type metering and TM: 3-3 for finger pick-up metering. Discuss how these are similar and different. Use TM: 3-4 to illustrate a pressurized metering disk. TM: 3-5 diagrams a pressurized metering drum. Air metering devices are shown on TM: 3-6. Discuss how these systems work differently but towards a similar goal.

Objective 4: Identify the components of solid planting equipment.
Anticipated Problem: What are the components of solid planting equipment?
(PowerPoint Slides 47 and 48)
IV. If the row spacing is too close to permit cultivating or other cultural practices between them, it is referred to as solid planting. Solid planting is accomplished by using grain drills, air seeders, broadcast seeders, and in very large open areas airplanes or helicopters.
A. Grain drills provide a more accurate distribution of seeds and a more uniform seeding depth than broadcast type planting equipment. There are three major types of grain drills.

(PowerPoint Slide 49)
1. The end-wheel drill has wheels that support and drive the drill.
2. A press-wheel drill has press-wheel gangs mounted on the rear of the drill that firm the soil over the seed, drive the metering mechanisms and support the rear of the drill.
3. The tiling seeder is an end-wheel type drill with power-driven cutter wheels that prepares a seedbed for each seed drop on the grain drill.

(PowerPoint Slides 50 and 51)
B. Solid planting equipment has several components.
1. The metering system is driven through sprockets and chains, and gears.
2. Fluted-feed and double-run feed are the two types of seed metering devices used on solid planting equipment.
 a. The fluted feed is made up of a fluted wheel which runs inside the feed-run cup, a stationary cutoff, an adjustable feed gate, and feed-gate lever. There is one fluted feed for each furrow opener.
 b. The double-run fees have a feed wheel that has two sides which meter seeds.
3. The seed tube is attached to each metering unit and to the furrow opener.
4. Furrow openers make a trench in the soil and place the seed at the desired depth.
5. The depth of solid planters is controlled by the position of an adjustable stop on the remote hydraulic cylinder and the amount of spring pressure.
6. Covering and firming the soil around the seed is accomplished by the use of a drag chain or press wheel. Some drills have no attachment for covering the seed, the design of the furrow opener permits the soil to fall back into the trench.

Use classroom discussion to reinforce the components of solid planting equipment. To extend this discussion, have students watch this machinery in action.

Objective 5: Explain the calibration of planting equipment.
Anticipated Problem: How is planting equipment calibrated?

(PowerPoint Slides 52 and 53)
V. Proper field adjustment and operation of planting equipment can contribute to increased yields. The operator’s manual for the planting equipment should serve as a guide for initial planter settings. Field calibration is the process of actually checking and making final adjustments to the equipment. A check of actual planting populations can easily be made by using one of the following methods.
A. The following method is reasonably accurate and is used when the operator wants to fine tune the planter.
(PowerPoint Slide 54)
1. Fill the seed hoppers at least half full to simulate average planter weight. Add powdered graphite if recommended by the planter operator’s manual.
2. Tie up covering wheels so that seeds can be easily counted. A small chain with an S-hook at each end works well for this.
3. Mark row distance equal to 1/1000 hectare.
4. Plant the measured distance at the speed you intend to use during planting. Start planting before reaching first mark and continue past last mark.
5. Uncover seeds within the measured distance and count them. Do not use bare hands if the seed is treated with an insecticide.
6. Multiply the number of seeds by 1000. This equals the planting population for one hectare.
7. To be accurate check each row.
8. Measure planting depth at this time.
9. Check average distance between seeds to determine accurate seed placement.
10. Make required adjustments for rate of seeding and depth of planting and recheck by repeating steps 1 through 4.

B. The following method is less accurate than the first, but is faster.

(PowerPoint Slide 55)
1. Fill the hoppers and plant several meters.
2. Measure 1 meter along each row.
3. Count number of seeds uncovered in this distance and determine the average number of seeds found per row.
4. Multiply the average number of seeds by the appropriate factor and multiply by 1000.

(PowerPoint Slide 56)
C. For hydraulic driven planters, the process is fairly fast and simple and can be done without going to the field. The planter is left in transport position and a collection container is placed under each row. The drive is turned on for a set time or distance and the seeds dispensed are counted.
D. Since manufacturers vary in their calibration steps, follow the guidelines in your owner’s manual. Planter travel speed may be checked by using either of the following methods.
1. Determining kilometers per hour (kph) using the time method.
2. Determining kilometers per hour using the feet method.

Use TM: 3-7 and TM: 3-8 to reinforce planter calibration.

Objective 6: Identify maintenance procedures for planting equipment.

Anticipated Problem: What are the maintenance procedures for planting equipment.

(PowerPoint Slides 57 and 58)
VI. Proper servicing of planting equipment can mean the difference between a profitable cop and high losses. Planting equipment are precision instruments,
and like any precision machines, they require a large amount of care. Such care includes:

(PowerPoint Slide 59)
A. Servicing of the planting equipment at the beginning of the season:
 1. Cleaning the planter thoroughly.
 2. Checking to see that there are no obstructions in the planter units to keep the mechanism from operating properly.
 3. Inspecting the metering system for worn or broken parts; repair or replace damaged parts.
 4. Checking all bolts and hoses for tightness.

(PowerPoint Slide 60)
B. Servicing of the planting equipment during the season includes:
 1. Storing the planting equipment inside overnight or covering it to prevent moisture accumulation in the materials storage hoppers.
 2. Using the correct type of lubricant. Lubricate the machine at the time intervals recommended in the operator’s manual. To avoid getting dirt into bearings, always wipe off fittings before lubricating.

(PowerPoint Slide 61)
C. Servicing of planting equipment before storage includes:
 1. Emptying and cleaning all boxes, hoppers, and hopper bottoms to prevent rust and corrosion.
 2. Checking for worn or broken parts and replacing them before the next planting season.
 3. Coating the furrow openers, knife and disk covers and any other polished areas with oil, grease or a protective covering.
 4. Painting any exposed metal surfaces to prevent rusting.
 5. Lubricating all bearings.
 6. Storing the planter in a building.
 7. Blocking up the planter with the wheels off the ground or floor.

Review/Summary: Review should focus around student comprehension of the lesson’s learning objectives. (PowerPoint Slide 62) Use classroom discussion to summarize the content and to identify any areas that need to be covered in more detail.

Application: The following lab activities will be helpful to students in applying the lesson’s content:
- LS: 3-1 Effects of Seed Depth on Germination
- LS: 3-2 Planter Data Sheet
- LS: 3-3 Field Calibration of Seed Rate

Evaluation: Evaluation should be based on student comprehension of the lesson’s learning objectives. A sample written test is attached to aid in assessing student understanding.
Answers to Sample Test:

Matching

1. B
2. E
3. H
4. A
5. F
6. G
7. D
8. C

Fill-in-the-blank

1. covering
2. metering
3. depth
4. drives
5. placement
6. furrow opener

Short Answer

1. Open the soil, meter the seed, place the seed, cover the seed, firm the seedbed.
2. Even emergence, correct spacing, correct ear size, economics, insuring the machine is working.
Operating, Calibrating, and Maintaining Agricultural Planting Systems

Name: __________________________

Matching: Match each word with the correct definition.

- a. broadcast
- b. calibration
- c. checkrow
- d. germination
- e. hill drop
- f. population
- g. row crop
- h. solid planting

1. Process of checking and making final adjustments to the equipment.
2. Seeds are located in hills of two to five seeds per hill.
3. Row spacing is too close to permit cultivating or other cultural practices between them.
4. Seeds are scattered randomly on top of the seedbed.
5. Number of seeds or plants per hectare.
6. Crop is planted in rows far enough apart to permit the operation of machinery between them.
7. Change from a dormant condition to one of activity and growth.
8. Hills are separated within the row the same distance as the rows are wide and aligned perpendicular to direction of travel.

Fill-in-the-blank: Complete the following statements.

1. To insure the seed is in contact with the soil and that it is not lying in a void or air space, seed ____________ devices are used.
2. Seed ____________ devices select the seeds from the hopper and delivers them to the seed placing mechanism at a selected rate.
3. The seeds must all be planted at nearly the same ____________ to get good germination and seedling emergence.
4. Planter ____________ deliver the correct spacing of seeds in the row at varying travel speeds and under varying soil and topographic conditions.
5. Seed ____________ accepts the seed from the metering device, drops it through the seed tube and delivers it to the furrow.
6. The _______________ opens a well defined groove in the soil where the seed may be placed at the proper depth, in firm contact with the soil.

Short Answer: Answer the following question.

1. What are the five basic functions of a planter?

2. Why is calibration of the planter important?
FUNCTIONS OF PLANTERS

- Placing the Seed in Soil
- Covering the Seed
- Opening the Furrow
- Metering the Seed
- Firming the Seedbed
Seed plates must be changed each time seed size changes.
The finger pick-up system eliminates the need to change plates to match seed size.
PRESSURIZED METERING DISK

Blower
Seed Disk
Seed Delivery Tube
Direction of Travel
PRESSURIZED METERING DRUM

- Fan
- Seed Drum
- Atmospheric pressure is lower than air pressure inside drum
- Air pressure inside drum holds seeds against holes
- Pressurized air holds seeds in place.
- Seed Drum
- Seed Release Wheel
- Two Seeds
- Discharge Tube
- Discharge Manifold
- Seed Cutoff Brush
- Seed cutoff and release mechanisms.
AIR METERING DEVICES

Pressurized Metering Drum

Pressurized air holds seeds in place.

Pressurized Metering Disk

Air pressure inside drum holds seeds against holes.

Vacuum Metering Disk

Direction of Travel
CALIBRATION OF THE CORN PLANTER

PLANT-TO-PLANT SPACINGS FOR VARIOUS PLANT POPULATIONS

Centimeters between kernels

<table>
<thead>
<tr>
<th>Seeds/hect</th>
<th>50 cm row</th>
<th>70 cm row</th>
<th>75 cm row</th>
<th>90 cm row</th>
<th>95 cm row</th>
<th>100 cm row</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,000</td>
<td>20.9</td>
<td>14.9</td>
<td>13.9</td>
<td>11.6</td>
<td>11.0</td>
<td>10.5</td>
</tr>
<tr>
<td>16,000</td>
<td>19.6</td>
<td>14.0</td>
<td>13.1</td>
<td>10.9</td>
<td>10.3</td>
<td>9.8</td>
</tr>
<tr>
<td>17,000</td>
<td>18.4</td>
<td>13.2</td>
<td>12.3</td>
<td>10.2</td>
<td>9.7</td>
<td>9.2</td>
</tr>
<tr>
<td>18,000</td>
<td>17.4</td>
<td>12.4</td>
<td>11.6</td>
<td>9.7</td>
<td>9.2</td>
<td>8.7</td>
</tr>
<tr>
<td>19,000</td>
<td>16.5</td>
<td>11.8</td>
<td>11.0</td>
<td>9.2</td>
<td>8.7</td>
<td>8.3</td>
</tr>
<tr>
<td>20,000</td>
<td>15.7</td>
<td>11.2</td>
<td>10.5</td>
<td>8.7</td>
<td>8.3</td>
<td>7.8</td>
</tr>
<tr>
<td>22,000</td>
<td>14.3</td>
<td>11.2</td>
<td>9.5</td>
<td>7.9</td>
<td>7.5</td>
<td>7.1</td>
</tr>
<tr>
<td>24,000</td>
<td>13.1</td>
<td>9.3</td>
<td>8.7</td>
<td>7.3</td>
<td>6.9</td>
<td>6.5</td>
</tr>
<tr>
<td>26,000</td>
<td>12.1</td>
<td>8.6</td>
<td>8.0</td>
<td>6.7</td>
<td>6.3</td>
<td>6.0</td>
</tr>
<tr>
<td>28,000</td>
<td>11.2</td>
<td>8.0</td>
<td>7.5</td>
<td>6.2</td>
<td>5.9</td>
<td>5.6</td>
</tr>
<tr>
<td>30,000</td>
<td>10.5</td>
<td>7.5</td>
<td>7.0</td>
<td>5.8</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>32,000</td>
<td>9.8</td>
<td>7.0</td>
<td>6.5</td>
<td>5.4</td>
<td>5.2</td>
<td>4.9</td>
</tr>
</tbody>
</table>
CALIBRATION OF THE CORN PLANTER

Length of row equal to $\frac{1}{1000^{th}}$ Hectare

Length of single row to row width equal $\frac{1}{1000^{th}}$ of an hectare

<table>
<thead>
<tr>
<th>Centimeters</th>
<th>Meters</th>
<th>Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>26.5</td>
<td>2.5</td>
</tr>
<tr>
<td>18</td>
<td>22.5</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>38</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>51</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>71</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td>76</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>81</td>
<td>4.8</td>
<td>10</td>
</tr>
<tr>
<td>91</td>
<td>4.3</td>
<td>15</td>
</tr>
<tr>
<td>97</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>102</td>
<td>4</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Effects of Seed Depth on Germination

Materials:
Growing flat (30 cm W X 45 cm L X 13 cm D), growing media, and corn seed.

 Procedures:
1. Place 1.5 cm of soil or growing media in the flat and plant one row of corn seed. Plant the same number of seeds in each row.
2. Add 2.5 cm of soil or growing media and plant a second row of corn 7.5 cm from the first row.
3. Add 2.5 cm of soil or growing media and plant a third row of corn 7.5 cm from the second row.
4. Continue planting sequence until the last row is planted 1.5 cm deep.
5. Tightly pack the soil or growing media on ½ of each row.
6. Students are to care for the flat and keep a daily record of observations.

Observations to be made are: germination rate, time of germination per row, time of germination on packed and unpacked rows, characteristics of first leaves to appear, and characteristics of plant from germination through Stage 1. The students could also identify any weeds germinating in the flat.

Questions:
1. Which row had the highest germination rate?

2. Which row germinated first? ___________ Last? ___________
3. What effect did the packing of the soil have on germination time?

 On % germination?

 Why?
Planter Data Sheet

Directions: Complete the following data sheet for a planter owned by a local producer or equipment dealer.

1. Make ____________________ Model ____________________
2. Number of rows ____________ Row Width ________________
3. Type of Frame __
4. Can the planter be used for conventional and no-till? __________
 How can you tell? ______________________________________
5. Does the planter have individual hoppers or one main hopper?
 __
6. Type of furrow opener __________________________________
7. Type of depth control __________________________________
8. Type of drive mechanism ________________________________
9. Type of metering system ________________________________
10. Type of seed placement ________________________________
11. Does the planter have a seed monitor system? ____________
 If so, what type and how does it work? _____________________
 __
12. Type of seed covering system ____________________________
13. Type of seed firming system ____________________________
14. Does the planter have any attachments (starter fertilizer, pesticide application, etc.)? ________________________________
 If so, what type, form, and method of application? __________
Field Calibration of Seed Rate

Materials:
- Corn planter and tractor
- Seed corn

CAUTION: Use protective gear when handling treated seed.

Procedure:
1. Fill the seed hoppers at least half full to simulate average planter weight. Add powdered graphite if recommended by the planter operator’s manual.
2. Tie up covering wheels so that seeds can be easily counted. A small chain with and S-Hood at each end works well for this.
3. Mark row distance equal to 1/1000 hectare.
4. Plant the measured distance at the speed you intend to use during planting. Start planting before reaching first mark and continue past last mark.
5. Uncover seeds within the measure distance and count them. Do not use bare hands if the seed is treated with an insecticide.
6. Multiply the number of seeds by 1000. This equals the planting population for one hectare.
7. To be accurate, check each row.
8. Measure planting depth at this time.
9. Check average distance between seeds to determine accurate seed placement.

Questions:
1. Which row had the highest population rate? ____________________
2. Which row had the lowest population rate? _____________________
3. What was the average population for the planter? _______________
4. How are population adjustments made? _______________________
5. How deep was the seed planted? ______________________________
6. How is the depth of planting adjusted? _________________________